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WAVE LENGTH LENSES
1

Introduction

The property shown by dielectric blocks of concentrating the en-
ergy of electromagnetic waves-forms the subject of this report. This
property is similar in many respects to the operation of an ordinary
glass optical lens, and for this reason blocks of dielectric designed
to concentrate radiant electromagnetic energy are called lenses, al-
though in appearance they do not resemble optical lenses.

The energies considered in the following have a much lower fre-
quency than that of lighti, and the wave lengths are generally such
that the lenses have dimensio"s of the order of a wave length, for the
more usual applications. In this they differ radically from optical
lenses. A definiie phase relationship is found to exist between the
energy in the lens and that of free space, and if in the design of
the lens, this relationship is not respected, the lens will not yield
its maximum concentrating power, or gain. The energy velocity in a
lens approaches that of light with a decreasing cross section. The
Gide walls of a lens are found to be effective energy gatherers. The
thinner the lens, the longer it can be made so as to increase its ex-
posed area. An increased gain results. The index of refraction of
the lens material plays a role in this action by its effect on the lens
velocity.

Experimental data correlating their different properties is given
in the following with tentative supporting theories where possible.

Dielectric lossea contribute a small and usually negligible effect
in the operation of all lenses, but this effect has been disregarded to
simplify as far as possible the following data.

Note:1 The term "wave length lens" is used in preference to "polyrod
antenna" because in m opinion the former expresses the lenslike con-
centration of energy of the device, i.e., its similarity to optical
lenses.

The wave length lens dimensions can be caused to vary continuous-
ly in any irection and the resulting variations of its characteristics
are smooth and continuous as is obtained in optical lenses. The term
antenna calls to my mind a structure that can only vary by Integers
such as an end fire array. We cannot speak of a two-and-a-half oscil-
lator antenna, whereas a lens two-and-M-sf~ ve lengths long is quite
reasonable.
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GAIN

If a receiver of electromagnetic energy is equipped with a proper-
ly desighed block of dielectric or lens, the signal from the receiver
is found to be greater than that obtainable with the bare receiver.
The ratio of the signal from the lens equipped receiver to that of the
bare receiver is defined as the rolative gain of the lens. It is the
relative increase in euergy received when the lens is in place to that
received without the lens. Conversely the same gain of energy is ob-
tained at a distant receiver by an emitter equipped with a lens compared
to the emitter without the lens.

The gain on axis of a lens is the charaqterietic of principal in-
terest and unfortunately the one least reducible to a simple quantita-
tive expression. It is the result not only of the lens material and
dimensions, but of the receiver to which the lens is coupled, and of
interactions between the receiver and lens.

For example, if a series of blocks of constant cross section but
varying length are set in front of a horn or wave guide of the same
cross section, the gain is found to vary periodically with length.
One variation of small amplitude and short period is generally discern-
ible, but there is a longer high amplitude variation that is most strik-
ing, as shown on all the attached curves of gain and particularly in
Curve No. 1.

The first variation is found to correspond to Snell's law of re-
flection from a thin sheet with normal incidence. The well known for-
mula for the transmitted flux for a sheet thickness, d"4 under these
cohditions is:

2
(r12 + r23) - r12 r23 sin 2 ocd

T 1-R = 1 - (1 + r12  r23)2 -4 r23 sin2rd ()

in which: V_

r-6 4E (2)

Dielectric constant of material j

le Dielectric constant of material k

L Wave length in sheet or lens.
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If end effects are disregarded, equation (2) givest r12  -r2l (3)

and equation (1) passes through minima fort

sin ccd = I or 2 1Yd = K K = It5,5 (4)

which can then give a direct measurement of 7 L" This proved of con-
siderable value in checking the apparent index of refraction in lenses
discussed later on, Otherwise, the undesirable effect of this reflect-
ion on gain is slight and can be reduced or eliminated by making the
lens pointed.

The energy of a lens increases with its length up to a certain
point after which it falls to a value corresponding approximately to
the gain of the bare mouth, after which it increases again. The side
walls can be shown to be responsible for this behavior by covering them
with a resistive material which destroys the gain of the lens, The
mechanism of this gathering action of the side walls seems to have to
do with the internal angle of total reflection in the dielectric. The
dielectric is probably traversed by internal displacement currents that
set up their own radiation in the dielectric, some of which is totally
reflected or entrapped within the lens and is not returned to the ex-
ternal field.

This energy is found to travel inside the dielectric and is not
confined to the surface. For example, a'very small hollow metallic
tube capable of transmitting the wave length under consideration can
have its open end imbedded in a much larger dielectric block, and the
energy in the tube will be found to be increased by the concentrating
action of the block.

A dielectric block is found to have no lower size limit or cut-
off dimension when exposed to an external field. It differs in this
from a dielectric filled wave guide, in which the cut-off dimension
is:

in which

= ave length in dielectric filled metallic guide

m Wave length in free space

S= Dielectric Constant
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c = Cut-off wave length of hollow guide

Xc= Pb for gravest mode rectangular guide

d = Dimension of wave guide normal to M vector

For energy to be transmitted along the guide, ?'§ must be real and
finite or -A

> 0 (6)

which leads to

2b '-" >-
(7)

If this is not obtained, transmission in a wave guide is impossible.
On the other hand, if the sides of the dielectric wave guide are ex-
posed to the external field, we have a lens and find the above limit-
ation does not exist; in fact, the more powerful lenses ar below this
limit.

The absence of cut-off under these conditions is discussed by
Schelkunoff2 whose data is summarized as follows:

"If a dielectric rod is subjected to a wave in a
non-dissipative medium, the waves will be cir-
cularly symmetric and hybrid. They will have E
nnd H components parallel to the rod - in the
rod (for gravest mode).

IZ Al (Xe) cos Hz = BJl (Xe) sin (8)

and in the medium

E OK1 (ke) c os 0 Hz = DKl (kD) sin (9)

in which the propagation factor e" z+ Cwt is implied. The transverse
phase constant X is such that for the rod

X2 T 2 + A, (10)

2Schelkunoff. "Electro Magnetic Waves" Pages 425-428.

- . - - --- ,. - - -i a'!' --.-- ..-------------



BUMBLEBEE Report No. 59 5

for the medium

k- r

(transverse propagation constant)

Schelkunoff defines R? and R 2 as the in-
trinsic phase constants in 1he rod and medium as:

10 =W/3 7 422 =W \/,, (12)

The 0 components of the field are given (for thA

rod) as

Ht= [AT JL X°) +BJ" ("(xo sin * (Co)

H ~ , [2~Ik+B~I~P CS* (14)

and for the external medium:

E - KI(kp) +DL WAL 2 K (kp  sink~p kI
(15)

Ht= -K(kp)'-L- K,(k/o cosIC k I VP 1)(16)

If the rod has a radius "a" the tangential Inten-
sities of the internal and exteral fields are con-
tinuous forp = a."

After simplifying, the result is:

g., JoXo) J2 (Xo) 1.,1  +u. 26,) J, (Xo)KI (ka)

A2 c2 'Ji (y,,. Xaka J, (Xa)K, (ka) (11)

+).jL c Ko(ka) K2 (:C) -u.j. 1Cg + .., 6p

K 2f K2 (ka) X2 0 2 k2
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Schelkunoff goes on to prove that if ka is made zerc,X a must
become a root of J1 orXo ----o also. There is no lower limit of *a"

for which transmission does not occur.

However, if k - o then o = Or:

r = 2 V 'i- = Z2T(Y 4 21Y (18)VAL?---%-

(for air) and the propagation function for free space becomes:

Vz -Wt 21TZ _ C21yot

e = e £I (19)

and has a maximum for

2 Z _ '2IfV = 0,1T, 21 .. or

Z = to

The time required for the energy to traverse oue centimeter at the speed
of light (ku = C ) is therefore to, which is tho function of an undis-
turbed plane wave. But putting k = o to verify the above equation re-
quires that X a approach a root of Jl. The first of these is X a = 0

and, a or X = o. If 1 -oX i 0 so "a" must be zero, or the rod
nonexistent. As soon as the rod diameter departs from zero, the phase
of the external wave is retarded in the vicinity of the rod. The equi-
phase surfaces cease to be plane but are inclined along the rod. The

phase of a plane wave in the neighborhood of a dielectric rod travels
at less than the speed of light. The bending of the phase surfaces
is sometimes expressed by saying that the Poynting vector becomes bent in-
to the rod.

Schelkunoff observes that the field varies exponentially for large
values of kP . The field is concentrated toward the center of the rod.

An attempt to formulate the overall phase velocity in the rod by
means of these equations leads to considerable difficulty. After some

further simplification an expreasion of Xt in function of Ko (kp)
is obtained and as p-+ o this function becomes exponential. It can
be expected, therefore, that. for - < I the phase velocity will be an
inverse exponential function o,' "aa approaching asymptotically the vel-

ocity of light for a -*o. The results of such an analysis would not
reflect tha axpar"mantally significa.nt ffoct; of th- rod ond", an

therefore do not seem of much practical value. The phase velocity in
a lielectric leas is always les than that of the external field. The
field in the lens at the attacking face is in time quadrature leading
the external field and will gradually lose this angle of lead as the
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fields advance along the lens until a laggiig phase angle of 900 is
reached, at which point the gain of the lens starts to decrease. Be-

tween these two extremes there always exists a region where the inter-
nal and external fluxes are in phase and maximum coupling exists. The
rate of lens energy increase in this region is maximum.

If the energy phase is such as has just been described, it shouid
be possible to secure additional gain, for a given cross section lens,
by shielding those parts of the length that are out of phase with the

external field, and trial shows this to be approximately true. If a
long dielectric rod is placed in the direction of propagation of a wave,
its relative gain can be increased by placing thin metal jackets over

it designed to shield the dielectric over such a length that a lag of
one-half period occurs throughout it. These jackets are then spaced no

that their attacking edges are at the points where the external and in-
ternal fluxes just reach time quadrature. For each Jacket so placed the
relative gain increases by a nearly equal amount. As the rod gets very
long the loss in the dielectric tends to decrease the increment gains.
A way of avoiding the excessive dielectric losses is to sectionalise
the dielectric rod so that the metal jackets are hollow. They then
advance the internal phase to bring it back into the proper phase re-
lationship. The dielectric following each section of hollow metallic
wave guide is in proper phase with the external flux. Both of these
arrangements confirm the conception of phase relationship between the
internal and external fields, but do not appear of practical importance
otherwise. It will be shown that the lens of Fig. 2 ha% a phase vel-
ocity almost equal to that of light. Constructive coupling exists in

it over a long length (actually 5.9 1) so that a nearly uniform increase
in gain up to this length should be expected. The sharp variations in
gain of short period are due to the matching and mismatching effect of
the dielectric in the wave guide, which is capable of transforming the
wave guide impedance to that of the lens-atmosphere system. Whea no
match is obtained, the lens transformer combination shows gains ohat
lie nicely on the expected gain curve. When good matching is obtained
the energy should be ,wice that obtained with no matching, wLich is
verified.

That the above variation is dae to the action of the dielectric
in the wave gide may be demonstrated by leaving a portion of the di-
electric fixed in the guide and extending the lens gadually outwards
as shown on Fig. 3. No matching exists here so that this curve falls
on the minima of the preceding one.

Now to get back to the actual gains of a lens. The phase velocity
of a lens, having a uniform cross section and a known apparent index of
refraction, will be rLz -S . c being the velocity of light and nL

- nL
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the apparent index of refraction which will be discussed later.

If the lens has a length d, the time required for the phase to
trsverse the lens will be tL - d-, while the time required for the
external field to sweep over the outside of the lens will be:

C

Previous discussion has shown that the difference between these
two times should be an odd number of half periods, the more practical
design generally being obtained if this difference is equnl to one-
half period, So if Y is the frequency of the received energy, the
following can be written;

tL -t
2)1 (21)

and solving for d the elementary lenses are:

d max C d max. (22)
2 1(nL- 1) 2 (nL-) r 2 (nL)k (

measured in wave lengths, is the position of the first peak In the gain.
Where both ends of the lens are flat, the actual pos3tion of the peak
may be displaced slightly by the reflection due to Snell's law. The
rear end of the lens may be used as an impedance mtching device or
mode transformer. Then the position of this part, with reference to
the metallic guide, will also have a bearing on the position of the
maximum peak. Reference is made, for instance, to Fig. 4. The cal-
culated position of the first peak is 1.1 A which is verified.

The amplitude of the gain is a much more complex problem. It de-
pends on the directivity or patvern of the lens, as well as on that of
the receiver to which the lens is fitted. Thinking only of the maximum
gain from a given cross section, a first approximation for the relative
gain of a lens over that of a metallic mouth of the same cross section
may be obtained by considering the lens made up of a number of uniform
oscillators arranged as an end-fire array. Each consecutive section
of the lens is fed as if the lens constituted a distribution line.
Under these conditions the gain derived by classical methods is:

GR + dmax (23)

where R s the gain of a lens of uniform cross section over that of
a metallic mouth of the same cross section and d max is the lens length
affording maximum gain for such a cross sectionl Experimental verifi-
cation is fair, as shown on Graph No. 5.
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Although this formula is only the roughest kind of an approximation,
it is rather interesting in that it shows the gain of a lens to increase,
as nL -*1. This can also be deduced from a study of lens patterns
and will be discussed again later.

As a very rough approximation it could be said that together a unit
area of the two walls normal to the E vector gather the same amount of
energy as the lens face normal to the wave propagation. In other words,
if the optimum length of a lens is three times its aperture, it will show

a gain of four when compared to the bare mouth. This rule of thumb ap-
plies only to low loss dielectrics and is on the conservative side. The
difficulty of formulating the gain in a rigorous manner is brought out
in the following:

The data discussed so far leads to speculation on the limit of rela-
tive gain of an ideal lossless lens that by some artifice could be de-
signed with the phase velocity of light. Primarily, it could be said
that there is no limit to the gain of Auch a lens. Experience has shown
that a lens will gather more energy thaA that contained in a square wave
length. The energy is not limited by any quantization. However, it is
believed that the field depletion caused by the lens would be a limiting

factor and that there is a finite limit to either the absolute or rela-
tive gain of such an ideal lens as has been postulated.

Using Schelkunoff' s method of developing the radiation pattern of a
group of sources, which has been so ably performed for lenses by Dr. Hor-

ton3 this formula is:

Mo GR = Mo 2 + /R(d)/ (24)

in which:

R(d) 2 M(SIN Kl. + z )e z dz (25)

where Mo and M represent magnetic currents at the origin and along the
lens considered as a radiator:

211 (26)

and S is a phase angle which can be considered zero, if Kt'-- K

3Horton: "On Dielectric Rod As An Antenna", CM-2?2, UT/DRL No. 66.
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There is no apparent constant value for 2T. along a lens, but it
decreases slightly as a lens is made long. Admitting, for the present
purpose, that this variation is due in reality to field depletion, and
that a lens has a characteristic wave length, k L, which has been dis-
cussed previously, the field depletion can be assumed to follow such a
law as:

M2 , M3 a -2z (27)

Putting this into R(d) and integrating;

(d).. [ ad(a sin K'd-K' cos K'd)+K] (28)

where "a" is complex. Drop M02, as it appears in terms of GR, and cal-
culate R(d) 2 REAL as:

R(d) 2 RI(aI 1 2(aP - a22 )(K 2  -2 md(b2 2 bl2 ) -2K' bl e- od
"-e )?9

with: aw = K" 2 K? + m2, a2  2 Km, (30)

and b and b2 are trigonometric functions of Kd and K
i d, without signi-

ficani influence in front of e- m d except to note that b2
2 - b1

2 is nega-
tive in the region of small d. Hence, the term in e -2md will be found
to bolster up the relative gain for small d which is observed experi-
mentally in Fig. 5. If it can be apsumed by anticipation that:

0< m <<K (31)

and passing to the limit of d and allowing K'--*K the result would be:

Glira/

which is finite although quit large.

To get an idea of m, a very thin lens as in Fig. 6, may be used.
The optimum length of this lens is 250 X so that in the lengths con-
sidereC of the order of 10 A , phase variations can be neglected. If
this lens were excited uniformly throughout its length, each wave length
of it would provide an increment relative gain of unity. Its relative
gain would lie on the line:

d33)

If diclectric losses are neglected, it can be admitted that actual-
ly each increment of energy gathered by a wave length section is a fixed
fraction, CC , of the preceding one.
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The energy of the first section would be E1 , that of the second CC
21, that of the third cC2 El, and so on. The relative energy gain of
the whole lens of A sections would be: dN d C...++?- -- 75 (34)

I-a;
1-c

from experiment. The expression 1 is connected to the coeffi-
cient of absorption m by e-P m = C and itls concluded that the limit of
relative gain is of the order of 45.

This particular.len cross section is about a fifth of a square
wave length. An ideal lens of this cross section would gather the ener-
gy contained in 9 or 10 square wave lengths or have- an ideal aperture of
about 3 , The smallest half power beam width of a lens of less than a
wave length would therefore be one third of a radian, or about 190, which
checks the sharpest patterns obtained at th4 : time (Fig. 16).

In the above deductions, dielectric losses were disregarded. Had
these been included, the optimum beam width would have turned out slight-
ly sharper than the best experimental patterns havi shown.

The ideal lens aperture wil- Le considered again under patterns of
arrays. The above discussion shows that the use of long lenses packed
closer than several wave lengths apart is not to be recommended.

APPARENT INDEX OF REFRACTION

Before attempting any theorizing on the apparent index of refract-
ion a description of a novel phase meter used to determine this quantity
experimentally is given. This meter is shown in the attached Fig. 7.
Its principle is to set up a standing wave in a slotted section of wave
guide between a reference signal and a signal that has traversed the
sample. Both of these signals originate from the same approximately
plane wave generated by an emitter P some distance from the receiver.
The slotted section is fed from each end by a small transfer probe that
traverses resistive wadding so that multiple reflections in the wave
guide are attenuated. The relative effect of the sample is measured by
noting a node position with the sample in place; with reference to the
position of the samo node without the sample. Wode positions can be ac-
curately gauged by averaging the position of two equel amplitudes indi-
cated by the sliding probe on each side of the desired node.

The apparent index of refraction of the sample can be readily cal-
culated as follows: First, measure a node without the lens. Let 1j be
the distanuce of t' .... nod. .fro .the m^,,,th of th4 reference horn and IU
its distance from the sample horn. Evidently:
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1' +1' =L (35)
12

(total electrical length)

Consider the origin of the plane wave at a distance d in front of each
horn. Let c be the velocity of light and v the velocity of the signal
throughout the wave guide system (assumed uniform in the slotted section).
The time for the signal to reach the position defined by 11 will be t'=

11

d + 1I and that for the position defined by 1'2 will be z' = d + 1'
2 U 2 Z

v V

If our node is close to the electrical center, these two times will
differ by one-half period or:

V- V 2c (36)

or (' - I') = '
V 1 2 2c (37)

using 1 (1' + 1') = L
v 2 V (37)

and adding this becomes:

2l 11,L + X (38)

By placing the lens of length d, in front if one of the wave guides,
and letting 11 and 12 define the new position of the same node we have:

tl =d + 11 2 + 1--

vL = unknown lens velocity.

These two differ by one-half period so that;

d +l1 1l=-. +12 + 'A
c V VL v 2c

or:

1(1 C - 12,) d (1- 1) + _,

v -- " ---"
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using as before:
1. (l I + 12) =L
v V

and adding the result becomes:

S11 = d (I- I) + ) +L (39)
v. VL c 2c v

Yow the measurement gives the positive displacement of the node (1 -1').

Forming the difference: 
11

2 (11 - -d (- - - -

v VL  c

Vt Cc
is obtained. Introducing the relations n = v , and by analogy, defining

nL as nL = V and Xg = . (known wave length in guide) the apparent in-
dex of refraction is:

II(l- I
n (40)

In this expression all coefficients except nL are given by the ex-

perimental datp,

A comparison of the results of several hundred determinations for

lenses of varying dimensions shows that nL is given with surprising ac-

curacy by the expression:
n,-1 = (n1 -

nc (41)

in which n is the index of refraction of the dielectric and A'c is a

characteristic wave length akin to the more usual cut off wave length of

a dielectric filled chamber. in the case of a rectangular chamber the

latter would be: 2n

c = r-/ (12 2
V 1) (m) 2+(j)2 (42)

with a, b, and d taken as the dimensions in the E, H, and propagation

directions respectively, and 1, m, and p are any integers.

Figures 2 and 3 of nL as a function of d show a more or less ir-

regular variation of the apparent index of refrAction for small lengths

d. This irregularity can be ascribed to the aiscontinulty of the lens

in the vicinity of the metallic mouth. The effect of this variation is

noticeable in side lobes of patterns and will be considered under 'tPat-

terns".
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As d increases, the-apparent index of refraction assumes a constant
value almost independent of d, and it seems, therefore, that p is nil in
the expression of characteristic wave length. Peihaps a more elegant
way of stating this would be to say that because of the forced wave in
the dielectric of the lens, the number of half-waves "p" in the direct-
ion of propagation, is always held to a minimum by the external wave and
the ratio &2becomes insignificant as d increases.

A consideration of the number of half-wave lengths "m" in the H di-
rection leads to the conclusion that this must be zero. The dielectric
lens is excited by a plane wave with the E vector normal to the b dimen-
sion. The only influence that could cause a cancellation of the E force
would be conducting side walls, which 4o not exist. Careful experimental
determination of r for narrow rectangular lenses seems to indicate that
the dimension "b" does have a small influence on the apparent index of
refraction. This influence however is much smaller than that of "am.

The dielectric dipoles are excited in the Na" direction by a plane
E wave. The number of full hnlf waves in this direction can be only
unity, and therefore A t 1.

The characteristic wave length of a lens reduces, therefore, to:

X'c = 2na (43)

for the more usual rectangular lenses where d is a wave length or longer.
In the case of cylindrical lenses, the voltage applied around the peri-
phery of the lens must set up a configuration corresponding to the TEll
mode for which

c n__

1.84 (44)

in which "a" is the diameter of the rod.

Table No. 1 gives the experimental verification of the equation:
nL =1+ (n-l) e - )(45)

for sevei'. l different lenses of widely varying proportions (see also
Fig. 8).

The excellent results given by this formula under widely differing
conditions lead one to believe it has a firmer foundazion than the empi-
rical one derived from these experiments.

The variations of lens wave length discussed above have been ob-
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served by Southworth4 , Mallach 5, and others, as well as ourselves. So
far, it has not yet been treated theoretically. This is rather unfor-
tunate because an accurate knowledge of this coefficient is essential to
formulate basically correct pattern and gain data. The complexity of

the problem can be gauged from Schelkunoff's discussion of wsves in di-
electric rods which has already been mentioned.

DIELECTRIC DEPOLARIZERS

The observation that the phase velocity through a lens depends on
the dimension "a" in the "E" plane leads to a useful depolarizing de-
vice. It is often desirable to pick up a signal from a polarized wave

although the receiver may be rotating or rolling. Consi6er a rectangular
plate of dielectric of a certain thickness and width; a plane wave polar-
ized along its smallest dimension will have very little phase retard,
while one polarized along its width will be retarded to a certain extent.
Make the length of the dielectric such that the diff rence between these
two retards is one-quarter period. To secure depolarization, the above
plate is mounted in a cylindrical wave guide so that its plane forms an
angle of 450 with the axis of the crystal probe.

For simplicity consiler an incident wave polarized at 900 to the
probe. Without the depolarizer the signal would be zero. However, the
incident wave will decompose into two components, one strongly retarded,
and directed along the width of the dielectric; and the other slightly
retarded and directed along the thickness. The amplitude of each will
be 0.707 that of the original. The probe will be sensitive to 0.707 com-
ponents of each 'of these individual waves. These probe components are
equal and opposed in space but orthogonal in time so that they recompose
at the probe to give a resultant equal to one-half of the original in-
tensity.

In practice the depolarizing plate is placed inside the wave guide
so as to avoid disturbing the lens pattern that is generally determined
by other considerations.

In reality the wave seen by the crystal is circularly polarized.
An observer looking down the wave toward the crystal, and seeing the
plane of the dielectric rotated clockwise 450 from the crystal axis
would see the electric vector rotating counter-clockwise. If the plane

of the dielectric were seen at an angle of 450 from the crybtal axis is
a counter-clockwise direction, the observer would see the electric

A 4.A P,...
Southworth, -"Some Pundamentl Zxperizents With ,
Ire. July, 1937. Volume 25.

5 P. Mallach. "Dielectric Radiators for DM and CM Waves".
Horton, Loc. cit.
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vector rotating clockwise.

If a receiver is equipped with one of these devices, and another
identical unit is placed on a sender, twice the energy is obtained com-
pared to the use of a sending horn of equivalent beam width. If one of

the devices is of opposite hand from the other, no signal is received.

The depolarizer may form a flattened extension of the lens which
tapers down in a fish tail shape as shown in Fig. 19. External depolar-
izers can be made on the same principle. They tend to give unsymmetrical
patterns.

It has been possible to check this simplified theory on the phase
meter and the attached Fig. 9 has been obtained. The probe signal lags
by & radians when the E vector is in the plane of an operating fish
tail, and leads by 1 radians when the E vector is perpendicular to the
plane.

This experiment gives a striking confirmation of the absence of a
cut-off point in a dielectric. If a cut-off existed as for dielectric
filled metallic guides, the operation of the depolarizer could still be
explained by one component remaining for a short distance only in the
dielectric, but the phase lag would be opposite from that observed.

PATTERNS

The pattern of lenses cannot be analyzed exactly because of the
lack of a definite formulation of the phase velocity and amplitude along
their length. From experimental studies of the apparent index of re-
fraction, it can be assumed that the wave length varies somewhat through-
out the length of the lens as well as the intensity of the displacement
currents. The experimental data on the index of refraction is a weighted
average of the lens wave length. Pattern formulae based upon constant
displacement currents and uniform weighted wave lengths will, therefore,
not be far off in the main lobe, while data on the side lobes derived
with this approximation will present more relati-fc errors.

On the other hand, an exact formulation of the wave length and in-
tensity along the lens .would lead to complicated expressions for patterns
that would be difficult to handle if not impossible of solution. In
practice the patterns of arrays of oscillators are always solved on the
assumption of uniform spacing and amplitude, and even these simplified
expressions are sufficiently complex to discourage most practical workers.

That the exact formulation of lens patterns is so complex is regret,
table because this would lead directly to a general expression of absol-
ute gain.

| - -~ . ,. ..- ..- -
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In spite of the reservations just mentioned, the usual array pat-
terns can be modified, as would be expected from lens behavior, and use-
ful lens pattern formulae derived.

E PATTERN OF A RECTANGULAR LNS

The general forurala for arrays established by Stratton is:

E2 = (A F0 F1 F2)
2  (46)

in which Fo is a form factor depending on the elementary current distri-
bution. As already stated the displacement current in a lens must be a
sine waie, zero at the two boundaries and maximua in the middle. The
form factor for such a current element 't the Z plane is:

sin 9 (47)

where 9 is the angle betw6en the E vector and the direction considered.
This factor can be checked experimentally by taking the pattern of a di-
electric filled wave guide after covering the metal edges with absorbing
material so as to reduce as much as possible the diffraction from the
metal edges. This device is only partially effective so that isome errors
from diffraction can be expected. However, experiment verifies the gen-
eral form of this factor as shown on Fig. 10(A).

If instead of a sine distribution, the only other logical alternate,
a constant field, had been used the well known Huygens pattern would have
been obtained:

(1 + sin Q)2 (48)

which is not verified by experiment.

The next factor FI is due in the case of lenses to the side wall
absorption as the lens length increases up to a wave length. The fact
that it is believed that the side walls are effective energy absorbers
suggests that this factor should be that of an orifice in an absorbing
screen, namely; air 2

= sin-tcos
_2a TrL cos (49)

ALVerification of patterns of wave length lenses represented by:
E2 = (F0 jl )2 (5o)
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is given in Fig. 10(B).

At this point one of the limitations of this method appears. M-
perimental lens patterns progress smoothly from one type of pattern to
the other, while fnr<'ae derived from motal arrays will only apply to
lenses of integer wave length. However the results obtained do have
practical use because the transition from one pattern type to another is
gradual. It is only necessary to assign the nearest integer number of
wave lengths to a lens to get satisfactory data.

The factor F2 for multiple wave length lenses appears to exist as
unity in the expression of the single wave length lens. As the length d
increases Y2 departs from unity in & smooth transition and side l6bes be-
gin to appear, while the main lobe becomes narrower. The lens then re-
sembles an end-fire array, the factor 72 of which can be derived from
the classical value of:

F2 = sin pT
sin 1 (51)

2
where:

p = number of oscillators in array

- V cos Cr (52)

with = spacing between oscillators, one wave length
11-e

T = phase lag from one oscillator to next = 2T(

The length I appears actually to be a function of 0. The aperture pre-
sented by a lens normal to a plane field is a cotangent function of the
argle 0. The wave length must vary inversely to the aperture in the E
plane according to some complicated law. A satisfactory expression is
obtained if it is admitted that

. sin e (3)

where AL is obtained by the phase meter or calculation discussed pre-

viously. Xxpression No. (52) becomes:

nL ,,re Y on e -2 = - s - _

and factor 12 for a lens "p" wave lengths long becomes:
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1p

F2 = sin( L sin2 )

sin(2._ sin2 0) (54)
nL

which after introduction in

E2 = (F0 F1 F2 )2  (55)

is verified experimentally in Figs. IO(C) and (D).

If the length "1" separating two oscillators is assumed to be con-
stant and independent of the angle W an expression;

F sin (T_'P sin 0)2=

sin (.-L_- sin (5nL (56)

is obtained which does not verify the experimental results nearly as well
as expression No. (54).

To obtain the coefficient F2, it has been assumed that the lens con-
tained an integer number of wave lengths, and that p is integer. Later
on this coefficient F2 with p unlimited will be made use of. Note here
that the reasoning fits better the classical antenna theory if p is
limited, to integers, but actual lenses know no such limitation. Their
patterns progress smoothly from that of the metallic structure to the
typical narrow, beam with minor side lobes, which merge and vary smoothly
as the lens length increases. The coefficient F2 is found to correspond
to this behavior also for p non integer but greater than one. In the
following, therefore, p will not be limited to integer but will be as-

sumed to be the ratio p = > .

H PATTERNS OF RECTANGULAR LENSES

The influence of the dimension of a rectangular lens in the H plane
is not nearly as pronounced as that of the dimension in the E plane. Ex-
perimental determinations of the variation of the phase velocitv in
function of the H dimension indicate that the field across a lens is very

nearly, if not quite, constant as discussed in the determination of the

apparent index of refraction "nL".

Th... ro, followig the same approach used for the E pattern, the
coefficient Fo will be:

Fo = (1 + sin 0) (57)
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where 0 is the angle between the magnetic vector and the direction con-
sidered. The H pattern of a rectangular wave length lens then becomes:

EH 2 a(1+ sinl0)
2 (sin b Cos 0 2
\nb cos 0 (58)

;kL

which holds nicely as long as "b" is greater than a wave length as shown
in Fig. 11. This formula also represents, with fair accurscy, the pat-
tern of a wide horn if ?XL is replaced by the free space wave length ,
as also shown in Fig. 11.

For narrow lenses, experimental results do not check the above ex-
pression with the required accuracy. For these lenses, if the field a-
cross the width of the lens is assumed to vary as is the case for the R
pattern, the resulting formula is:

EP .=((COS Cos cosit1b-Co
sin0 /\4 cos0

expPrimental verifIcation of which is shown in Fig. 12, both for very
short and for wave length lenses.

The logical choice of F2 is then:

F = sin(nL sin2 0)
2 sin(n sina0)

(60)

which works equally well for narrow and for wide lbnses where p = - > 1.

This factor is in contradiction with the known relative independence

of the lens phase velocity and "b". If, as implied by the expression of
EH in narrow lenses, the phase velocity in a lens should be assumed to
have the same dependence on *b" as on "a" the depolarizer could not oper-
ate. However, experimentally, the variation of velocity with "b" is

small. The framework of the formula for characteristic wave length,
that enters into the expression of nL, is incapable of interpreting a
small variation of field across the face "b", which apparently exists to
a significant extent in narrow lenses, to form the patterns obtained ex-
perimentally.

Better data on the region ofb>2 where this effect takes place
could be obtained from patterns of wide long lenses. However, the

-n -- . . . . .. . . ...... ----- *..
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latter are so narrow that experimental errors hide the preference that
may exist for:

2=(sin -- sin 0 2

sin V sin 0 (61)

nL

which would follow from complete independence of nL and b, or for;

F 2
2 = (sin ITP sin2 0)2

sin M sin 2 0 (62)
nL

which would be correct if nL varied strongly with "b".

PATTERNS OF CYLINDRICAL LENSES

The patterns of cylindrical lenses can be determined in the same way

as those of' rectangular lenses.

On examining the latter, both the E and H planes are found to be

symmetrical except for the coefficient "Fol which is chosen to represent

either a sine distribution or a uniform field a3 the cese m~y be.

In a cylindrical lens it is evident that there must be a sine dis-

tribution in both planes because of the tapering off of the fields at
the edge of the lens, so that the E and H patterns of a cylindrical lens

are identical. This is a consequence of the theory of dielectric wires
already discussed and is borne out entirely except in very short lenses
where the unsymmetric diffraction from the metallic mouth has enough im-

portance to disturb the lens patterns. This diffraction is, however, not

as troublesome in a circular mouth as in a rectangulqr one.

The factor F1 will be changed to;

F ~Ji Iacos 9

Cos 0 (63)

as derived by Schelkunoff 6 for a circular orifice in an absorbing tcreen.

Otherwise the coefficients for a cylindrical lens are the same aa those

of a rectangular lens, namely;

2 =EH
2  Cos (- -oos )2 a 2 ( lnn sin 2  o

E E (c 2 Cos_)) _______9)

sin 0 / i a cos 0 sin M sin 0"
AL k' ol)

6Schelkunoff, Loc cit, Page 356.

_ _ _ _ _ _ _ _ _ _ _ _- - ..-- --.. -- I-
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Figure 13 gives the experimental verification of this expression for
several structures.

It may be observed here that the first zero of Jl occurs for 3.8.
If5t- Z_ 3.8, there ,ill be no side lobes in a cylindrical lens of one

wave length.

In fact, the same observation could be made for rectangular lenses,
In this absence of side lobes is found one of the fundamenta! advantages
of dielectric lenses over metallic structures where dimensions are
limited and side lobes are detrimental.

PATTERN OF POINTED LENS

The preceding discussion of lenses of uniform dimensions emphasizes
the fact that the necessary tools to accurately formulate the pattern are
not available even for uniform cross sections. When considering a lens
tapered to a point the difficulties are found to be much greater, for
both the amplitude and wave length are made to vary much more sharply.

Qualitative data for the tapered part of a lens is all that can be
estqblished.

Experience has always shown that tapering a lens down to an edge in
the case of rectangular lenses or to a point in the case of circular ones,
decreases the side lobes of long lenses and broadens slightly the main
lobe. The curve in Fig. 14, of a four wave length pointed lens is typical.
It is compared with the pattern of two cylindricF.1 lenses of three and
four wave lengths respectively. The main lobe is seen to broaden and tho
side lobes become practically non-existent, in a pointed lens.

This suogests that the field in the pointed unit operates similarly
to that over a parabolic reflector. If the latter is first illuminated
with a uniform flux, maximum sharpness and gains are obtained along with
side lobes. Now if the field is tapered down in any manner toward the
edges, the gaussian distribution for instance, the side lobes decrease,
the main lobe increases in width slightly, and the maximum gain decreases.

Schelkunoff7 indicates an expression:

F = (eS - eL 9,)(ecg-el )----.(el - e' ')(

for the pattern of any array of oscillators with any amplitudes at fixed
spacings. The angles g, are those at which the pattern is zero,

7 Schelkunoff, Loc cit, Page 350.
Wolff, I.R.Z., May, 1937.
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and on introducing these values a polynome of n terms in e

results, the coefficients of which give the required amplitudes of the
oscillators. This method is difficult to apply because experimentally
the pattern of a pointed lens is zero over a wide region. The equiv-
alent zero points are numerous and the expressions become quite complex,

Another more rigorous treatment is to express the experimental pat-
tern as a Fourier8 series, and to compare this series with that repre-
senting an array of oscillators of random spacing and amplitude. The
method has been discussed elsewhere and will not be repeated here. The
treatment shown in Fig. 14, is generally sufficient for practical pur-
poses.

Upon measuring the phase of a pointed lens the quantity (nL - 1) is
found to be almost exactly one-half of that of a cylindrical lens of
similar length. This suggests that only one-half the oscillators in the
point have much influence. Therefore, p in the previously developed
pattern expressions is taken as just half the number of wave lengths of
the pointed lens. With this adjustment a fair representation of the
main beam of a pointed lens is obtained as shown in Fig. 14.

PATTIEXS SUGGESTED BY OTHE. WORMERS

Excellent work has been done on lens patterns by Maliach9 . He de-
rives an expression for cylindrical units of small cross sections:

=(Intd! (nL - sin /)
M2 = Trd (nL- sin 9) (66)

with d = lens length, which is commendable for its simplicity and gives
good results for long thin cylindrical lenses, which were the only ones
considered by him. This e6pression gives a better approximation of the 4
side lobes of thin lenses than ours but as Mr. Mallach points out, the
beam widths it gives are broader than those obtained experimentally.
This expression falls down entiraly for short lenses, particularly if
they are thick, which is generally the case in our work. In passing we
note that he failed, as well as ourselves, in formulating the apparent
index of refraction nL . The results of Mr. Mallach are the only recent
published data we know of on wave length lenses.

Where a closer analysis of side lobes is desirable, the use of

Fourier series as developed by Wolff I0 for patterns leads to much better

8 Wolff, I.R.Z., May, 1937.
P. Mallach: "Dielectric Radiators For DM and CM Waves", Page 14.

Translated by P. L. Rarbury, Harvard Univarsity,

10 Cambridge, Massachusetts.
Wolff, I.R.., M4y, 1937.
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approximation than any of those discussed herein. A consideration of all
the experimental patterns shows that these tend to be uniformly zero
over much broader regious than can be reconciled with metallic array
theory. The framework of the expression obtained by this theory does
not permit the interpretation of functions remaining zero over large
regions, while the Fourier series is well adapted to just this type of
function. However, for the central portion of lens patterns, the metal-
lic array theory gives sufficient accuracy for practical purposes at the
expense of much less labor.

LENS ARRAYS

If F2 represents the pattern of an individual lens, then the pattern
of an array of lenses equally spaced in either the E or H plane and of
equal amplitude will be*

ZE p2p3 2 (67)

in which:

sin n3 Z4

sin :3--- (68)

with:

V 3 T &a3 os 0 + (r3 (69)

where av is the spacing between the lenses and CC3 the difference in
phase from one unit to its next door neighbor, and 9 is the angle meas-
ured from the E or H vebtor as the case may be.

In the case of only two antennae, with C 3 = 0, the normalized
field intensity is:

sc e -- s -f
Fa rracos, F2(cs(~ ew ±~ L+fCos( Cos

The half power point of this array (assuming F = constant for small

angles) will be suth that:

cos (2 a3 cos 9) = 0, (71)

or

2Ta 3 CO. = T'f ;Tf v K being odd integer.

Cos 2 3A4a3
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Suppose we ask for Gj. = 89.750 or a half degree beam width. The

corresponding spacing between elements is 57 wave lengths. Such an array

would have a total power beam width of only one-half degree. A parabolic

reflect:v of the same aperture with gaussian distribution would have a

half powor point one degree wide. The two lenses would appear to have a

considerable advantage over the metallic reflector, except tUat the side

lobes of the lens system would be very numerous and in the vicinity of

the main lobe they would be practically as intense as the latter. The

lens array, therefore, would be useless from a practical standpoint with
this arrangement.

The envelope of the side lobes of the lens array is given by P
2 .

This depends principally on the factor:

sin M inn2 0 (72)nT,

and even with the longest practical lens of say ten wave lengths, the
first side lobe would. be 93% of the principal one.

A four lens array for the same beam width would have an aperture of
79.2 A . The usual parabolic reflector of the same aperture would have

a half power point of 0.725 degrees.

The advantage of the array has been decreased from this standpoint

by using four elements. The highest side lobe, using a ten wave length
lens will be about 6%, whereas the parabolic dish would have no side
lobes.

This analysis has been continued and shows that the dielectric lens

array for very narrow beams and low side lobes has no practical advantage
over the metallic reflector or the equivalent metallic lenses. The lens

array becomes as bulky as the metallic structures.

On the other hand, in a lens array designed for moderate beam

widths the spacing becomes so small that the individual elements are apt

to interfere with each other by depleting the field in their immediate

vicinity.

In these arrays, if side lobes are not detrimental, the width of

the main lobe can be made about half that of a horn of the same aperture,

but the first side lobes will be of the order of 20%. As an example, a

two element array using four wave length tapered units aced 3.43
apart will have a main lobe 80 wide as compared to about 17o for the

equivalent horn, but the first side lobe occurs 170 off center and is

25%. To reduce this side lobe would require longer elements which de-

feat their purpose by interference,
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The lens array or polyrod array has, therefore, practically no ad-
vantage over metallic structures.

For moderate beam widths single lenses do the job better than an
array and are much simpler. For extreme beam sharpness and few elements,

the side lobes of the lens array are as important as the main lobe. To
reduce the side lobes requires the use of many elements and the structure
eventually becomes as bulky as the equivalent metallic structure.

The attached graphs,Figs. 16, 17, 18, ani 20, give several practical
single lenses achieving moderate beam widths with low side lobes. These
are considered the limit of practical application of dielectric lenses.

GAIN FROM PATTERNS

Before leaving the question of lens patterns, an attempt can be
made to see how the absolute gain of a lens should vary with its dimen-
sions. Take the complete pattern expression:

E2 = A2 y02F:2 F2 2 (73)

for a rectangular lens. Consider only the gain on axis where 9 = T-
The factors become successively: 2

= (cos(_ cos 9)) 2 1 (74)

$' in 9

1fo 2
l2 =(sin-L cos 9 = (75)

cos 9 /

2 2
p2 = sin n - sin- sn Pn=
F2  nil (in (76)

(sin Ml 71-a a.sn
nL nL

in which p, the number of wave lengths, is for maximum gain:

pmax= nL
AL 2(nL-1) (77)

Now nL can approach unity if the lens is quite small. However, it
is evident from the curves of nL that even fox a lossiess dieiec~rlc the
effectiveness of the lens increments decreases as the lens length in-
creases.
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Neglecting this consideration for the moment and using the empiri-
cal formula for "nL" , we get'

pmx nL I+(n-I)e
= -2 (h-) 2(n-I)e 2no (78)

Allow "a" to become quite emall and the limit of p max becomes:

p mn- 1r 2 2fl-na ] (79)

If: 1 . n -< 2

the value of nL in function of p maximum is

2p

nL=TW*- ) (80)

Putting this in (76) the result is:

sin piT. sin 11(2p-1) sin (Tip IT 003o ( 2p)=

s2sin i si ,i° sin . 8

if p = integer.

If the lens is such that p maximum = 1, it is necassary that

nL = 2(nL - 1) = 2 nL - 2 nL = 2 or e> 4 (82)

This case corresponds to rather inefficient lenses. Otherwise, as
p becomes large ctn T can be replaced by its angle and equation becomes:

A
13

ITe na (83)

The maximsm gain of a lens is proportional to a function of the in-
verse of the lens cross section. This is rather a surprising conclusion
and quite the contrary that would be expected at first sight. However,
it is qualiatively borne out 6 parircntally. Lenses of smaller cross
section can be made to pick up larger energies than lenses of large
cross sections in the region of A. <
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This is a logical consequence of the observation that the side walls
o a lens are effective gatherers of energy. The increase of lens energy
velocity is rapid as the cross section decreases below a wave length so
that the side wall area can be increased by lengthening the lens without
uaphasing so as to more than offset the reduction due to the decreasing
aperture.

This conclusion has to be tempered by the depletion of the external
field by long lenses. Logically, this depletion must occur and It can
be shown up by several experimental methods. It has been determined
that the energy absorbed by a lens can be several times that flowing in
a square wave length cross section, but that as the lens length increases
the incremental effectiveness of added length decreases. Considering *A"
as a constant depending only on the lens cross section is, therefore, not
correct.

However, the inverse function of "a" is almost exponential and its
effect remains, therefore, preponderant on gain.

This conclusion is confirmed experimentally for small apertures
growing up to above a wave length. It does not appear to bold, however,
for apertures of several wave ilengths, but in this region our whole
theory of patterns ceases to be valid. Here the lenses begin to resemble
optical units in their behavior.

By admitting that the relative gain Obtained experimentally, namely;

G rl = 1 + 2 L (84)

is approximately correct, this can be converted to absolute gain by mul-
tiplying by a coefficient A = - . Roughly the result is a function of
the form:

*Lb 8= A -- + B(N-z Z > 1 (85)

The first term is very large for large - and small for small -

while the second term behaves in the opposite manner.

This is approximately what happens experimentally as shown on the
attached Graph No. 15.

The effect of the variation of the dielectric cgnstant of the lons
~-rti al, c-n be gauged from the preceding expressions.

The gain on axis is proportional to the square of a factor (no. 81)

I
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F - 1

sin - sin lr"(nL-l)
n(86)

With dielectrics for which < 4, the apparent index is less that two
so that; n1-I 1'ii

0 <-1_ -- <
nL 2 (87)

and therefore the maximum gain with the usual plastic dielectrics in-
creases as the apparent index of refraction decreases. As this is tied
to the true index by

nL - 1 (n- 1) e- (2n

(88)

the true and apparent index vary in the same direction and a small di-
electric constant is beneficial. This is verified experimentally within
the limits of dielectrics used. Higher gains have been achieved with
"F 1114" having an index of refraction of 1.4, than with polystyrene
(n = 1.58) which in turn is superior to glass (n ~ 2). Naturally, if
n- > 1, the lens ceases to exist and entrapment of energy by total re-
flection does not occur. The equations used do not reflect this effect
but consider the angle of total reflection as a constant. The region
n--1 has not been investigated by us.

LENSES AS IMPEDANCE MATCHERS

An ideal lens would transform a plane wave in free space to the
type of wave existing in the metallic structure to which it is connected.
If this were possible, the transition from the metallic structure to
space would be achieved smoothly by the lens without reflection. The
lens would match the wave guide impedance to that of a plane wave in
space.

The use of the standing wave deter and the standing wave ratio to
study irapedance matching and the use of dielectric slugs to obtaia match-
ing is described in the literature and will not be repeated here.

Suffice it to say that a slug of dielectric in a wave guide can be
made of sufficient length to match the wave gide impedance to that of
atmosphere.

In practice, the lens material is extended into the metallic
structure for just such a length, the amount of which can be adjusted,
so as to bring the standing wave ratio to unity, as shown on the stand-
ing wave meter.
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Although theoretically the quality of the lens proper can be
judged by its standing wave ratio, in practice this effect is very
much less than that of the matching slug.

Therefore, it was best in this work, to calculate the lens length
from the formulae for the lens, .and to limit the use of the standing
wave meter to the adjustment of the matching slug.

The use of an SWR meter to check general lens behavior would be a
great simplification over the present laborious methods. Unfortunately,
with the exception of the matching device mentioned above, there is
little experimental relation between the SWR and the gain of a lens.
When the length of a lens has been based on either a calculated or ex-
perimental determination of phase velocity, and if the lens is continued
into the wave guide in the form of a transformer section, the minimum
SWR will indicate the best adjustment of length around that indicated by
the phase velocity.

The SWR of a bare tube end is of the order of 2, indicating a re-
flected voltage of about 33% of that of the primary wave. The energy
loss from this reflection is only about 11% and can be easily disre-
garded in most lens applications.

If the toEmnsformer section is placed so as to add its reflection
to that of the mouth, the total reflected voltage may be as high as 66%,
corresponding to an SWR of five and an energy loss of almost 50#. This
is brought out in the attached compared graphs of lenses of small cross
section with transformer extensions, Nos. 2 and 3.

Lens No. 2 gave an SWR of less than 1.2 at all peak points of gain
and approximately five at nodes of gain. Two symmetric pattern lenses,
one 400 and the other 200 wide, will have gains in the ratio of 1 to 4.
The SWR meter shows the variation of impedance from one to the other is
only slight, and can be hidden by small errors in transi, rmer adjustment.
The study of the SWR of lenses does not give very reliable results.
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TABLE NO. 1

WAVE LENGTH LENSES

Experimental Verification of

Lens Dimensions in A Error
a b d ?k _ A Calculated Experimental Calculated -

4n2az e 4nTP Experimental
nL  nL

1.206 2.381 .969 .0687 .93360 1.542 1.572 - .03
.826 1.984 3.096 .1467 .86355 1.502 1.477 + .025
.826 2.578 1.534 .1467 .86355 1.502 1.489 + .013
.826 4.566 3.096 .1467 .86355 1.502 1.488 + .014
.397 1.984 1.588 .6349 .53004 1.308 1.315 - .007
.397 2.580 3.969 .6349 .53004 1.308 1.293 - .015
.397 4.566 4.881 .6349 .53004 1.308 1.315 - .007
.318 P.580 3.988 .9920 .37083 1.215 1.208 + .007

.107 1.984 15.875 8.7040 .00017 1.0001 1.002 - .0019
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